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ERRATUM 
RE: ARL-TR-1846 

'The Use of Complex Stiffnesses for Hysteretic Damping' 
by T. A. Korjack 

Request the following pen-and-ink change be made to Equation 17, page 5, of subject 
report: 

The equation currently reads: 

w   -Y Rr,i~R+U 
G>- 

The equation should read: 

Rr,j-Rr+\,i 



Abstract  

This technical treatise has exemplified a response spectrum method that is particularly suited 
for spring-mass-damping systems excited by one or more base or ground disturbances 
characterized by displacements. It offers an alternative to the conventional response spectrum 
method, which is best suited for a single prescribed ground acceleration. This methodology has 
also introduced a method of how to incorporate hysteretic damping through complex spring 
stiffnesses. When the formulation is expressed via base displacements, a simpler application of 
the response spectrum method to varying spring-mass systems with attendant input excitations 
can be realized as expressed as the ratio of energy considerations inherent in the natural physics 
of the phenomena itself. 
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1. Introduction 

Hysteretic damping is responsible for limiting the oscillations in mechanical systems such as in 

drive trains of modern tanks. If we look at a linear one-degree-of-freedom spring, mass, and 

dashpot arrangement, the selection of the proper values of mass, stiffness, and damping constants 

to produce an overdamped or critically damped system can be effectuated without too much 

difficulty. If we consider an n-degree-of-freedom spring and mass distributed system model 

where Xt(t) would be the absolute displacement and Y(t) would be the absolute ground 

displacement, then it is possible for Y(t) alone to be specified such that Xt(t) may be determined, as 

in the case of the design of a gas turbine engine so as to resist shock and vibration. The usual 

classical approach is simply to start out with the laws of motion with respect to the base or 

foundation framework (Beskos and Boley 1980). The base then becomes fixed where each 

respective identified mass will be subjected to an inertial force miY(t) and the displacement 

variables become the relative displacements, viz., Z,(Y). 

Hence, we can now proceed with a modal analysis solution using either the acceleration time 

history, Y(t), or the acceleration response spectrum A(a>) that is associated with Y(t). Since shock 

and base line or even ground motion do not have repeatable time histories but do have repeatable 

shock spectra, then the acceleration response spectrum method will be of greater interest (Biggs 

1964). It is also possible to formulate our original speculative problem with a fixed base and with 

only the mass next to the base subjected to a force equal to knY(t) and with the displacement 

variables being the absolute displacements, Xt(t). What is needed at this point of analysis is to 

simply cast the equation of motion with respect to an observer at rest and move the term k„Y(t) to 

the right-hand side of the nÄ equation. 

The purpose of this treatise is to follow through the consequences of this latter formulational 

ideology such that it can be easily invoked via a suitable computer simulation and then modify the 

formulation to allow the use of the complex stiffness model of hysteretic damping for oscillations 

of multi-degree-of-freedom systems, especially inherent in the accessory gear box, reduction gear 

box, and output shaft of a typical gas turbine engine.   This type of analysis can prove to be 



invaluable for the diagnostics and prognostics of engines as illustrated by Helfinan, Dumer, and 

Hanratty (1995). This work differs from other investigations by invoking complex stiffnesses for 

hysteretic damping, whereas in most analyses, the stiffnesses are represented as ordinary spring 

constants. 

2. Concept Formulation 

The systems considered herein are those that can be modeled by the matrix differential 

equation 

MX(t)+KX(t) = KnY(t\ (1) 

where X(t) is an n-dimensional vector of displacements and M and K are nxn symmetric matrices 

containing the physical parameters of mass and stiffness constants. Let us assume that the 

eigenvalue problem associated with (1) has a spectral matrix Q2 and a modal matrix $ such that 

O, is the 1th eigenvector with elements Or,,, where r = 1,2,.. ., n. Furthermore, also assume that 

the <£, are normalized so that MAX Or, =1 for each respective i.  In order to have orthogonal 
r ' 

conditions, we are required to have 

<S>rM<D - Mi (2) 

and 

O^O = Ki (3) 

where M, are the modal masses and Ki are the modal stiffnesses.   Furthermore, it can be easily 

shown that Q.j = KilMu If we look at the transformation of coordinates (Brent 1973), viz., 

X(t) = Qq(t), (4) 
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then (1) becomes, 

M®q + K®q = KJ. (5) 

Then, if we premultiply by <&r and use (2) and (3), we then have, 

M^q + K.q^^KJ. (6) 

Also, it can be shown that 

i.e., a vector composed of the n"1 element of each $,•.   Then, (5) becomes 

The response spectrum is the maximum response of an oscillator subjected to a forcing function 

drawn from the process of interest as a function of the frequency of the oscillator. If the response 

of interest is the absolute acceleration, then the acceleration response spectrum is denoted by 

A(co), where o is the angular frequency of the oscillator. If 

AM=MAXQ,{t), (9) 

where Qt(t) is the solution to 

MtQ + K& = KtY, (10) 

then, linearity requires that 

MAX^.(f)=On,,.A(coI.)^-, (11) 



where qtft) is the solution to (8). Furthermore, (4) can be recast as (Byrne and Hall 1973) 

*r=j>r.,&. (12) 

The acceleration of the r01 degree-of-freedom in the i* mode can therefore be expressed as 

*„=*,,*,, (13) 

and using (11), we then have 

MAXXrii=^r^niA(^)^. (14) 

Also, if we let (Inman and Andry 1980) 

MAXXrJ=RrJ, (15) 

then, in going from (13) to (14), the information about the temporal relationships among the 

terms on the left-hand side of (15) will be lost. This loss of information requires that the exact 

modal recombination procedure, viz. (4), be suitably replaced by an approximate modal 

recombination rule. If we use the square root of the sum of the squares, i.e., 

K   = JjX*f    , (16) 
1=1 

then Ar is expected to be an approximate measure of the maximum absolute acceleration of mass 

point Mr when all modes are excited by input Y(t). The spring forces in mode / can be obtained 

from 



F  .=K   Rr,i-R+U (17) 
rr,i     Ar 2 ' 

and, if required, they can also be combined by the square root of the sum of the squares rule. 

Equations (14) and (17) can also be the basis for a computer solution of (1) using the acceleration 

response spectrum associated Y(t). If A(oo) is simply not specified, a separate program will be 

necessary to compute A(w) from Y(t) in accordance with (10). In the case of multiple, distinct 

inputs, as is the case in the structure of the gas turbine engine, it is better to generalize (1), as 

done similarly by Biggs (1964) and base the solution on the prescribed displacements. 

3. Effect of Damping 

In lumped spring-mass models subjected to transcendental forcing such as sinusoidal, which 

occurs within many electrical components as in a gas turbine engine, hysteretic damping can be 

included by considering the spring stiffnesses to be of the complex mode (Inman and Andry 

1980), i.e., K* =KR + iKu where the superscript * represents a complex number, the subscript r is 

the real part of the complex number, and the subscript / is the imaginary part. This representation 

is a mathematical convenience rather than a physical depiction as are complex numbers 

themselves. In fact, hysteretic damping is energy dissipation, which is independent of frequency 

and is proportional to the square of the displacement. Hence, hysteretic damping is a much better 

predictor of the ability of metals and polymers to dissipate energy than is linear damping. Shock 

response spectra are usually specified with damping as a parameter. If we are to use (14), we 

should select the value of A(u,) for the appropriate damping value. If damping is measured by the 

loss factor given as r\, then (14) can be expressed as 

R* . = O .<£   A((0.TI.)-$- , (18) 

where Kt can be given as, 



Ki = ^KR^i. (19) 

We are now left with the question of how to find r); for each respective mode of the 

vibrational spectrum. In order to adequately address this question, we should first consider the 

simple case of a single-degree-of-freedom system subjected to sinusoidal forcing. We are then led 

to the well-known equation of motion as, 

mx'+k*x* =/*, (20) 

where 

/(0=JtefrV], (21) 

x(t) = Refre""]. (22) 

If we let the loss factor to be defined as 

T) = ^-, (23) 

then (20) simply becomes, 

MX*+Klt(L + tr\)X*=f. (24) 

Hence, we can now proceed to an n-degree-of-freedom system such that 

MX * + iKtX * + KRX * = F\ (25) 

such that 



F*=K*J, (26) 

and 

Y{t) = Re[Y*eiM\ (27) 

If we desire a generalization of (4) such that (Inman and Andry 1980) 

X*{t)=®q*(t), (28) 

where $ is the real modal matrix derived from the undamped eigenvalue problem, then we are led 

to the following i01 degree-of-freedom relationship of (25) by using (2) and (3), i.e., 

M,q; +Kiq
t + i*,1*,*,*,' = Q* Ft'. (29) 

Hence, if we compare (29) and (24), a modal loss factor can be suitably distinguished as 

such that we are assuming that the damping is small so that no significant errors will arise from 

using the undamped mode shapes. We can write (30) in another form, such as 

TI, = ^ , (3D 

Xfr)>w-*w+i)a 

where we have the imaginary and complex part of the complex stiffness. If we further let 



(*,.), = 11; fe)Ä, 02) 

in such a way that (31) is transformed into 

r|, = ^ , (33) 

then it becomes clear that (33) is the ratio of potential energies, i.e., the numerator is the sum of 

the energies dissipated in each spring in mode i, and the denominator is the sum of the energies 

stored in each spring in mode i. Hence, this equation should be able to be used to estimate modal 

loss factors, since it can be justified merely on the basis of natural intuitive estimation. If we look 

at the relationship between (33) and (30), we are formally led to the conclusion that (33) is 

essentially the modal superposition using complex stiffnesses. 

4. Conclusion 

This technical treatise has exemplified a response spectrum method that is particularly suited 

for spring-mass-damping systems excited by one or more base or ground disturbances 

characterized by displacements. It offers an alternative to the conventional response spectrum 

method, which is best suited for a single prescribed ground acceleration. This methodology has 

also introduced a method to incorporate hysteretic damping through complex spring stiffnesses. 

The response spectrum method was formulated in terms of base displacements rather than simple 

base acceleration, which is characteristic of base shear calculations for building and structural 

vibration analysis under seismic and ground disturbances or artillery base loads. When the 

formulation is expressed via base displacements, a simpler application of the response spectrum 

method to varying spring-mass systems with attendant input excitations can be realized, as 

expressed as the ratio of energy considerations inherent in the natural physics of the phenomena 

itself. 
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Hence, the energy ratio equation should be able to be used to estimate modal loss factors, 

since it can be justified merely on the basis of natural intuitive estimation. Furthermore, the use of 

this derived relation might be able to be applied to handle single frequency excitations that occur 

in a typical gas turbine engine for diagnostics involving component failures or even routine 

maintenance. This treatise has identified the original, practical use of simulating complex 

stiffnesses for hysteretic damping, which is quite different from traditional representations of the 

usual spring-mass-damping phenomenology. 
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